
Package: SpatialGraph (via r-universe)
September 16, 2024

Version 1.0-4

Type Package

Title The SpatialGraph Class and Utilities

Date 2023-07-21

Imports igraph, methods, pracma, sf, shape, sp, splancs

Author Javier Garcia-Pintado

Maintainer Javier Garcia-Pintado <jgarciapintado@marum.de>

Description Provision of the S4 SpatialGraph class built on top of
objects provided by 'igraph' and 'sp' packages, and associated
utilities. See the documentation of the SpatialGraph-class
within this package for further description. An example of how
from a few points one can arrive to a SpatialGraph is provided
in the function sl2sg().

License GPL (>=2)

URL https://github.com/garciapintado/SpatialGraph

Repository https://garciapintado.r-universe.dev

RemoteUrl https://github.com/garciapintado/spatialgraph

RemoteRef HEAD

RemoteSha b0557352b0cef9101dbcf6bf6a01a7c80f7d7e65

Contents
SpatialGraph-package . 2
attSGe . 3
distSG . 3
distSGv . 5
explodeSLDF . 6
pointLineD . 6
pointOnLine . 7
pointOnSegment . 8
pointsPolylineD . 8

1

https://github.com/garciapintado/SpatialGraph

2 SpatialGraph-package

pointsSLDFchain . 9
pointsToLines . 10
polylineChainage . 11
polylineLength . 11
revSGe . 12
rotation . 13
routeSDG . 13
sg2igraph . 14
sgChVIDs . 14
sl2sg . 15
SpatialGraph . 16
SpatialGraph-class . 17
splitPolyline . 18
splitSLDF . 18
textSGe . 19

Index 20

SpatialGraph-package The SpatialGraph Class and Utilities

Description

Provision of the S4 SpatialGraph class built on top of objects provided by ’igraph’ and ’sp’ pack-
ages, and associated utilities. See the documentation of the SpatialGraph-class within this package
for further description. An example of how from a few points one can arrive to a SpatialGraph is
provided in the function sl2sg().

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.
see the documentation of the function sl2sg in this package to get a start. A case study making use
if this package is Garcia-Pintado et al (2015)

Author(s)

Javier Garcia-Pintado

Maintainer: Javier Garcia-Pintado <jgarciapintado@marum.de>

References

The first published application of this package is Garcia-Pintado, J. et al. (2015). Satellite-supported
flood forecasting in river networks: a real case study. J. Hydrol. 523, 705-724.

attSGe 3

attSGe Add or Modify attributes in SpatialGraph edges

Description

Add or Modify attributes in SpatialGraph edges

Usage

attSGe(SG, att, eID, val, default)

Arguments

SG SpatialGraph

att name of the field [column] in the edge dataframe to be added/modified

eID edge identifiers [row.names of the edge data.frame]

val values corresponding the eID above

default default values for edges not considered in eID above

Value

A SpatialGraph

distSG Calculate across-network distance for a set of sparse points

Description

This function obtains the across-network distance for a set of sparse points, by using the distance slot
in a SpatialGraph. The calculation is supported by a previously calculated between vertex distance
matrix [via a call to the library igraph by the function distSGv]. The SpatialGraph is considered
as undirected for distance calculation. If euc=TRUE [default], the distance between two points is
defined within this function as the maximum of both the minimum along-network distance and the
Euclidean distance. The distance itself between the points in x,y and the network is neglected
in the function for the along-network distance. Both, x and y, are SpatialPointsDataFrame
objects, which must contain at least the fields eID and chain, which describe their relationship
with the SpatialGraph object defined by SG. These can be obtained with either the function
pointsSLDFchain or pointsToLines (the latter is faster, but depends on GEOS)

Usage

distSG(SG, x, y = NULL, euc = TRUE, wei = NULL, getpath = FALSE)

4 distSG

Arguments

SG SpatialGraph

x SpatialPointsDataFrame

y SpatialPointsDataFrame

euc boolean scalar, whether to use Euclidean distance as minimum threshold for
resulting distances

wei if not null, field in SG@e with a variable to obtain a state-related weight. See
details below.

getpath if TRUE (and wei != NULL), eID identifiers for each path from x to y elements
is returned

Details

The application of state-related weights in this version is a simple state-dependent weight matrix
related to some field in SG@e [i.e. the edges in the input SpatialGraph]. The only current calcu-
lation evaluates the path between queried points (x,y), and along the path, for every junction and
jump into a new edge, the ratio for the evaluated state variable (taken as the highest value divided
by the lowest value) between the two edges at the junction is obtained. Currently a maximum ratio
equal to 10.0 is hard-coded. The product of ratios along the path gives the weight.

Value

If wei=NULL, a matrix of distances between x and y. If wei is not NULL, a list with a distance matrix
and weight matrix (plus a matrix with eID identifiers for the path, if getpath=TRUE) is returned.

Author(s)

Javier Garcia-Pintado, e-mail: <jgarciapintado@marum.de>

Examples

if (1 > 2) { # not run
dem <- readGDAL(file.path(system.file('external',package='hydrosim'),

'watershed1','IDRISI_maps','dem','dem.rst')) # SpatialGridDataFrame
plotGmeta(layer=dem, xlim=662500 + 2500 * c(-1,+1),

ylim=4227500 + 2500 * c(-1,1), zlim='strloc', as.na=0)

generate some crossing lines
zz <- list()
zz[[1]] <- digitGmeta(layer=dem, type='Lines', ID=1)
zz[[2]] <- digitGmeta(layer=dem, type='Lines', ID=2)
zz[[3]] <- digitGmeta(layer=dem, type='Lines', ID=3)
SL <- SpatialLines(zz)
SG <- sl2sg(SL, getpath=TRUE)
points(SG@v, cex=2) # plot SpatialGraph vertices

apath <- SG@path[[1,2]] # iteratively plot a path as an example
for (iv in 1:length(apath$v)) {

points(SG@v[apath$v[iv],], cex=2,pch=2)

distSGv 5

if (iv == length(apath$v))
break

lines(SG@e[apath$e[iv],],col='blue',lwd=2,lty=2)
Sys.sleep(1)

}

sample a few points [as a matrix] close to some edges
xy <- digit() # sample locations
xych <- pointsToLines(xy, SG@e) # SpatialPointsDataFrame mapping
points(xy, col='blue', pch=3)
points(xych, col='darkgreen', pch=19)

along-network distance
xyndis <- distSG(SG, xych)

state-dependent weighted along-network distance
SG@e@data$wxs <- 3+round(runif(nrow(SG@e@data)),2) # [m2] foo wetted cross-section areas
SG@e@data

xywdis <- distSG(SG, xych, wei='wxs')
xywdis <- xywdis$dis * xywdis$wei # Schur weight application into distance estimation
}

distSGv Calculate the distance slot in a SpatialGraph

Description

Calculate the distance slot in a SpatialGraph. This is done via a call to the library igraph, which
does the calculation. Distances are undirected.

Usage

distSGv(SG, getpath = FALSE)

Arguments

SG SpatialGraph

getpath boolean. Whether to calculate the SG@path slot

Value

A SpatialGraph with the slot dist (and path if requested) recalculated

6 pointLineD

explodeSLDF Explode Lines in a SpatialLinesDataFrame

Description

explode Lines in a SpatialLinesDataFrame, so that each single Line, within each Lines slot, is
upgraded as a new 1-Line Lines slot

Usage

explodeSLDF(SLDF, FID)

Arguments

SLDF a SpatialLinesDataFrame

FID if not NULL, field name, within the attribute table considered as additional
unique identifier, so that incremental numeric values will added to this field to
avoid duplicate values

Value

a SpatialLinesDataFrame

pointLineD Euclidean distance from a set of points to a line segment

Description

pointLineD returns a list with a number of components from a points to line segment analysis

Usage

pointLineD(xy, xyp)

Arguments

xy 2 x 2 [x,y] matrix defining the start and end of the segment

xyp p x 2 [x,y] matrix with a point set

Details

pointLineD conduct a detailed points to segment distance analysis, returned as a list

pointOnLine 7

Value

A list with the input components xy and xyp, and the aditional components: d, point-line distance
(distance between the points in xyp and their perpendicular projections of the line); dc, diferential
chainage over [x0,y0] (> 0 if the projection goes in the segment direction); cross, boolean vector
indicating whether the perpendicular projection of the points crosses the segment, or not

See Also

Spatial-class

pointOnLine Snap a points to a line

Description

This function snaps a point to a line based on the minimum distance between the point and the line

Usage

pointOnLine(cool, coop)

Arguments

cool 2-col matrix giving the coordinates of the line

coop 2-length vector repsenting the point

Value

A 4-length vector, with ’x’,’y’ [coordinates of the point snapped to the line], ’d’ [distance from
the input point to the new snapped point], and ’chain’ [accumulated along-line distance from the
starting of the line to the snapped point]

Author(s)

Javier Garcia-Pintado

See Also

Spatial-class

8 pointsPolylineD

pointOnSegment Snap a points to a segment

Description

This function snaps a point to a segment based on the minimum distance between the point and the
segment

Usage

pointOnSegment(s, p)

Arguments

s [2,2] matrix giving the coordinates of the line, one point per row

p 2-length vector repsenting the point

Value

A 4-length vector, with ’x’,’y’ [coordinates of the point snapped to the segment], ’d’ [distance from
the input point to the new snapped point], and ’chain’ [distance from the starting of the segment to
the snapped point]

Author(s)

Javier Garcia-Pintado

See Also

Spatial-class

pointsPolylineD closest points in a polyline to a set of points

Description

pointsPolylineD returns a list with a number of components from a points to polyline analysis

Usage

pointsPolylineD(xy, xyp)

Arguments

xy n x 2 [x,y] matrix defining the polyline

xyp p x 2 [x,y] matrix with a point set

pointsSLDFchain 9

Details

pointsPolylineD conducts a detailed points to polyline distance analysis. First the distance from
the set of points to the lines defined by every single segment in the polyline is obtained by succesive
calls to pointLineD, then the distance to every single node in the polyline are also obtained. The
lower distance is chosen.

Value

A data.frame with the columns: inode is the index of the first node in the closest segment to each
point, x0 and y0 are the corresponding coordinates of those nodes, xc and yc are the coordinates
of the point in the polyline closest to each point in xyp, these may be but are not necessarily one
the polyline nodes, dis it the distance from each point tho the polyline, chain0 is the chainage of
x0,y0 with the polyline, and dc is the differential chainage from xc,yc to x0,y0

See Also

Spatial-class

pointsSLDFchain Obtain chainage from sparse points along a SpatialLinesDataFrame

Description

For a set of points, obtains the closest Line object in a SpatialLinesDataFrame. The function as-
sumes that each Feature (entry in the DataFrame part of the SpatialLinesDataFrame) just contains
one Line (i.e. one polyline). The within-polyine chainage (that is, distance from the initial point of
the poyline to the mapping of the point into the polyline) is also returned. If mask is NULL, each
point in the set is assigned a line in SLDF by Euclidean distance. If mask is provided, the match
between mask and the SLmsk field in SLDF is used instead for polyline assignation.

Usage

pointsSLDFchain(SLDF, xy, SLmsk='FEAT_ID', mask=NULL, type='SpatialPointsDataFrame')

Arguments

SLDF SpatialLinesDataFrame

xy REAL [n,2] matrix of points, or a SpatialPointsDataFrame

SLmsk is !is.null(mask) this is the field in the SLDF data.frame matching the values in
mask

mask REAL, OPT, [n] a vector indicating to which line in SLDF is related each point

type character. Either ’SpatialPointsDataFrame’ or ’mapping’. In the latter case, just
the chainage in line feature identifiers are returned

10 pointsToLines

Value

A data.frame with two columns, ’chai’, and ’eIDs’, where ’eIDs’ are the row names of the data.frame
component of the input SpatialLinesDataFrame

Author(s)

Javier Garcia-Pintado, e-mail: <jgarciapintado@marum.de>

pointsToLines Snap a set of points to a set of lines

Description

This function snaps a set of points to a set of lines based on the minimum distance of each point to
any of the lines

Usage

pointsToLines(points, lines, withAttrs = TRUE, withDis = TRUE, withChain = TRUE)

Arguments

points An object of the class SpatialPoints or SpatialPointsDataFrame, or a 2-col matrix
of [x,y] coordinates

lines An object of the class SpatialLines or SpatialLinesDataFrame

withAttrs Boolean value for preserving (TRUE) or getting rid (FALSE) of the original
point attributes. Default: TRUE. This parameter is optional

withDis Boolean value for including distance from source points to snapped-to-lines
points

withChain Boolean value for including the chainage of the snapped points in their corre-
sponding lines

Value

A SpatialPointsDataFrame object as defined by the R package ’sp’. This object contains the snapped
points, therefore all of them lie on the lines. The returned object contains the fields ’lid’, ’eID’, and
’chain’, providing information about the relationship between the source data points, the snapped
data points, and its location within the network: ’lid’, and ’eID’ are the line index and line ID,
respectively, of the lines in which the new snapped points lie; ’dis’ is the distance between the
input points and the snapped points, and ’chain’ is the chainage of the snapped point within the
corresponding line

Author(s)

Javier Garcia-Pintado

polylineChainage 11

See Also

Spatial-class

polylineChainage Obtain the chainage of nodes along a polyline

Description

Obtain the chainage of nodes along a polyline [2-col matrix]

Usage

polylineChainage(xy)

Arguments

xy a 2-column matrix representing the polyline nodes

Details

polylineChainage calculates a vector of chainage values [along-polyline distances] from each
node in a polyline to the initial node

Value

A vector

See Also

polylineLength

polylineLength Obtain the length of a polyline

Description

Obtain the length a polyline [2-col matrix]

Usage

polylineLength(xy)

Arguments

xy a 2-column matrix representing the polyline nodes

12 revSGe

Details

polylineLength calculates the [along-polyline] length of the polyline

Value

A scalar

See Also

polylineChainage

revSGe Reverse Lines in a SpatialGraph

Description

A SpatialGraph contains a SpatialLinesDataFrame, describing the network topology. The in-
put eID indicates the identifiers of a set of lines (edges) in the network to be reversed. Note
eID does not refer to the line index within SG@e, but to the Feature Identifiers, as extracted from
row.names(SG@e@data)

Usage

revSGe(SG, eID)

Arguments

SG SpatialGraph

eID vector of Feature Identifiers for lines to be reversed

Details

Note eID does not refer to the line index within SG@e, but to the Feature Identifiers, as extracted
from row.names(SG@e@data). Accordingly to the reversed coordiantes, the corresponding fields
["v0","v1"], are interchanged.

Value

A SpatialGraph

rotation 13

rotation Rotate 2D points

Description

rotate points, counterclockwise for positive angles, and clockwise for negative ones

Usage

rotation(coords, radian)

Arguments

coords 2-col matrix of [x,y] coordinates

radian rotation angle

Value

a 2-col matrix with the points rotated around [0,0]

routeSDG Accumulate sources/sinks along a directed SpatialGraph

Description

Assume a SpatialGraph is directed and conduct an accumulation of source/sink values at nodes
across the network. The accumulation assumes no delay in transmission

Usage

routeSDG(SDG, FUN='cumsum', ifld='inflow')

Arguments

SDG SpatialGraph, assumed as directed

FUN name of a function to be applied for the routing

ifld name on the field in the SpatialPointDataFrame vertex slot to be used used as
source/sink

Details

The SpatialGraph, used as input, must have the ifld field to be used as input, in the vertices slot
v (a SpatialPointsDataFrame). The accumulated output is provided as the new field ofld in v. The
edges slot e serves to route the input across the network

14 sgChVIDs

Value

A SpatialGraph with the added ofld field in the vertex slot

sg2igraph Map a SpatialGraph into an igraph

Description

The vertex and edge information in a SpatialGraph is mapped into an igraph object

Usage

sg2igraph(sg, directed=FALSE)

Arguments

sg SpatialGraph

directed whether the resulting igraph is directed

Details

It is assumed that the SpatialGraph, used as input, is correct (i.e.g all records in sg@e@data have
the two first field correctly identifying the field ’ID’ in sg@v. It is also assumed that the sg@e@data
data.frame has the fields div and len. These two are highly useful to conduct network operations
on the resulting igraph

Value

An igraph

sgChVIDs Change vertex IDs in a SpatialGraph

Description

Change the field "ID" in the vertex slot, v, of a SpatialGraph. The fields v0 and v1 of the edge slot,
e, are accordingly updated

Usage

sgChVIDs(obj, IDa, IDp = NULL)

sl2sg 15

Arguments

obj A SpatialGraph object

IDa A vector indicating the updated vertex IDs

IDp A vector indicating the prior vertex IDs

Details

If IDp is not provided, it is assumed that the vector of updated indexes is sorted equally to the order
in which the vertices are stored in the slot v of the SpatialGraph. If IDp is provided, the mapping
IDp -> IDa is used for reclassifying the vertices.

Value

A SpatialGraph object

sl2sg Map a SpatialLinesDataFrame into a SpatialGraph

Description

This function is the major workhorse to map an input SpatialLinesDataFrame, as defined in the
package sp, into a SpatialGraph by using the spatial connectivity. Input is first exploded by using
explodeSLDF, and then all vertices in the SpatialGraph are automatically generated according to
crossings in the input polylines.

Usage

sl2sg(SL, clipd = NULL, getdist = TRUE, getpath = FALSE)

Arguments

SL SpatialLinesDataFrame as defined in package sp

clipd distance threshold for clipping features, If NULL, a value of 1.0E-04 of the
domain side size is used

getdist calculate the dist slot in the returned SpatialGraph

getpath calculate the path slot in the returned SpatialGraph

Details

A SpatialGraph is generated

Value

A SpatialGraph

16 SpatialGraph

Author(s)

Javier Garcia-Pintado, e-mail: <j.garcia-pintado@marum.de>

Examples

x y
create list of Line objects
if (1 > 2) {
library(sp)
library(SpatialGraph)
zz <- list()
zz[[1]] <- Line(matrix(
c(661750, 4229150,

662650, 4229450,
663550, 4227650,
663550, 4226850), ncol=2, byrow=TRUE))

zz[[2]] <- Line(matrix(
c(660250, 4229650,

661050, 4226450,
662550, 4225350,
664850, 4225850,
664650, 4229150,
662350, 4228850), ncol=2, byrow=TRUE))

upgrade Line as Lines
for (i in 1:length(zz)) {
zz[[i]] <- Lines(list(zz[[i]]), ID=i)

}
as SpatialLines
SL <- sp::SpatialLines(zz)
as SpatialGraph including path calculation
SG <- sl2sg(SL, getpath=TRUE)

plot(SL, axes=TRUE)
points(SG@v, cex=2)
lines(SG@e, lwd=2)
points(SG@v, cex=2, col='grey', pch=19)
text(SG@v, labels=SG@v$ID)
label edges and directions
textSGe(SG)
show a distance matrix between nodes
SG@dist
show path from node 1 to 3
SG@path[1,3]
}

SpatialGraph Create a SpatialGraph object

Description

A SpatialGraph object is created

SpatialGraph-class 17

Usage

SpatialGraph(v, e, dist = NULL, path = NULL)

Arguments

v SpatialPointsDataFrame

e SpatialLinesDataFrame

dist along-network (symmetric) distance matrix

path matrix of lists with paths corresponding to dist. While distances between vertex
couples are symmetric, the path matrix is not symmetric as individual path to
from source vertex to destination vertex. Each list in the matrix has two S3
components (v,e) describing vertices (including bounds) and edges along the
path. Thus it is always one less edge than then number of vertices in the path

Value

SpatialGraph returns an object of class SpatialGraph-class

SpatialGraph-class Class "SpatialGraph"

Description

Class for spatial networks

Objects from the Class

Objects can be created by calls to the function SpatialGraph

Slots

v: Object of class "SpatialPointsDataFrame", whose data.frame must contain the "ID" field as
unique identifier

e: Object of class "SpatialLinesDataFrame", whose data.frame must contain the fields v0 and
v1 matching the unique identifiers "ID" in the slot v data.frame

dist: Matrix, representing the undirected along-graph distance between all vertices in the network

path: list with variable length arrays describing the minimum distance path between vertices

Author(s)

Javier Garcia-Pintado, e-mail: <j.garcia-pintado@reading.ac.uk>

18 splitSLDF

splitPolyline Split a polyline into a number of transects

Description

splitPolyline returns a list with a number of transects along a polyline

Usage

splitPolyline(xy, xyp, dmax)

Arguments

xy 2-column [x,y] matrix defining the polyline nodes

xyp 2-column [x,y] matrix with a point set

dmax maximum distance between points in xy and the polyline, for these to be con-
sidered for poyline splitting

Details

splitPolyline obtain the closest points in a polyline to a given input set of points. Those closest
points are used to divide the polyline in a number of transects. The indivudual transects are clipped
to the input point dataset, so the different transects are continuous in space. Note that if the input
points is quite appart from the polyline, the output seqence of transect may substantially differ form
the input polyline at rupture zones

Value

A list in which each element is a matrix representing an individual polyline

See Also

Spatial-class

splitSLDF Split 1-Line Lines in a SpatialLines or a SpatialLinesDataFrame by
intersection with a point dataset

Description

splitSLDF divides the 1-Line Lines in the SpatialLines or the SpatialLinesDataFrame at in-
tersections with the input point dataset

Usage

splitSLDF(SLDF, SPDF, dmax=NULL)

textSGe 19

Arguments

SLDF length-1 SpatialLinesDataFrame or SpatialLines object
SPDF SpatialPointsDataFrame
dmax maximum distance between points in SPDF and the polylines in SLDF, for these

to be considered for poyline splitting

Details

splitPolyline obtain the closest points in the SpatialLinesDataFrame to a given input set of
points. Those closest points are used to divide the polylines in a number of transects. The indi-
vidual transects are clipped to the input point dataset, so the different transects are continuous in
space. Note that if the input points is quite appart from the polyline, the output sequence of tran-
sects may substantially differ form the input polyline at rupture zones. The input parameter dmax
is provided as a mean to avoid too strange splitting results. Setting dmax to a ver low value will
reduce the spureous results, but also the input points need to be closer to the lines for the adequate
recognition of splitting points

Value

A SpatialLinesDataFrame or a SpatialLines, according to the input

See Also

Spatial-class

textSGe Label edges in a SpatialGraph plot

Description

A SpatialGraph contains a SpatialLinesDataFrame, describing the network topology. This func-
tion adds line IDs and direction arrows to an existing plot of a SpatialGraph.

Usage

textSGe(SG, acol='wheat', tcol='navyblue', arr.length=0.4)

Arguments

SG SpatialGraph

acol color of the graph direction arrows
tcol color of the text for graph edge IDs
arr.length length of the direction arrows

Value

Arrows and edge IDs added to a SpatialGraph plot

Index

∗ classes
SpatialGraph, 16
SpatialGraph-class, 17

∗ package
SpatialGraph-package, 2

∗ spatial
attSGe, 3
distSG, 3
distSGv, 5
explodeSLDF, 6
pointLineD, 6
pointOnLine, 7
pointOnSegment, 8
pointsPolylineD, 8
pointsSLDFchain, 9
pointsToLines, 10
polylineChainage, 11
polylineLength, 11
revSGe, 12
routeSDG, 13
sg2igraph, 14
sgChVIDs, 14
sl2sg, 15
SpatialGraph, 16
SpatialGraph-class, 17
splitPolyline, 18
splitSLDF, 18
textSGe, 19

∗ utilities
attSGe, 3
distSG, 3
distSGv, 5
explodeSLDF, 6
pointLineD, 6
pointOnLine, 7
pointOnSegment, 8
pointsPolylineD, 8
pointsSLDFchain, 9
pointsToLines, 10

polylineChainage, 11
polylineLength, 11
revSGe, 12
rotation, 13
routeSDG, 13
sg2igraph, 14
sgChVIDs, 14
sl2sg, 15
splitPolyline, 18
splitSLDF, 18
textSGe, 19

attSGe, 3

distSG, 3
distSGv, 3, 5

explodeSLDF, 6, 15

pointLineD, 6
pointOnLine, 7
pointOnSegment, 8
pointsPolylineD, 8
pointsSLDFchain, 3, 9
pointsToLines, 3, 10
polylineChainage, 11, 12
polylineLength, 11, 11

revSGe, 12
rotation, 13
routeSDG, 13

sg2igraph, 14
sgChVIDs, 14
sl2sg, 15
SpatialGraph, 3–5, 12, 14, 15, 16, 17, 19
SpatialGraph-class, 17, 17
SpatialGraph-package, 2
splitPolyline, 18
splitSLDF, 18

textSGe, 19

20

	SpatialGraph-package
	attSGe
	distSG
	distSGv
	explodeSLDF
	pointLineD
	pointOnLine
	pointOnSegment
	pointsPolylineD
	pointsSLDFchain
	pointsToLines
	polylineChainage
	polylineLength
	revSGe
	rotation
	routeSDG
	sg2igraph
	sgChVIDs
	sl2sg
	SpatialGraph
	SpatialGraph-class
	splitPolyline
	splitSLDF
	textSGe
	Index

